What is the value of # y # in #sin99/(5y-18) = sin49/(3y+2.7) # ?

1 Answer
Dec 17, 2017

#=> y = - (18sin49 + 2.7sin99)/(3sin99 - 5sin49 ) #

Explanation:

Multiplying by #5y - 18 #:

#sin99 = (sin49 ( 5y - 18))/(3y+2.7) #

Multiplying by #3y + 2.7 #

#=> sin99 (3y + 2.7 ) = sin49( 5y-18) #

Expanding:

#=> 3sin99 y + 2.7sin99 = 5sin49 y - 18sin49 #

Rearanging:

#=> y ( 3sin99 -5sin49) = -18sin49 - 2.7sin99 #

#=> y = - (18sin49 + 2.7sin99)/(3sin99 - 5sin49 ) #