What is the variance of the standard normal distribution?

1 Answer
Apr 11, 2018

See below. The standard normal is the normal set up such that #mu, sigma = 0,1# so we know the results beforehand.

Explanation:

The PDF for the standard normal is: #mathbb P(z) = 1/sqrt(2 pi) e^(- z^2/2)#

It has mean value:

# mu = int_(-oo)^(oo) dz \ z \ mathbb P(z) = 1/sqrt(2 pi) int_(-oo)^(oo) \ dz \ z e^(- z^2/2) #

# =1/sqrt(2 pi) int_(-oo)^(oo) \ d( - e^(- z^2/2)) #

# =1/sqrt(2 pi) [ e^(- z^2/2) ]_(oo)^(-oo) = 0 #

It follows that:

# Var(z) = int_(-oo)^(oo) dz \ (z - mu)^2 mathbb P(z) #

# = 1/sqrt(2 pi) int_(-oo)^(oo) \ dz \ z^2 e^(- z^2/2) #

This time, use IBP:

# Var(z) = - 1/sqrt(2 pi) int_(-oo)^(oo) \ d( e^(- z^2/2)) \ z #

# = - 1/sqrt(2 pi) ( [ z e^(- z^2/2) ]\_(-oo)^(oo) - int_(-oo)^(oo) dz \ e^(- z^2/2) ) #

# = - 1/sqrt(2 pi) ( [ z e^(- z^2/2) ]\_(-oo)^(oo) - int_(-oo)^(oo) dz \ e^(- z^2/2) ) #

Because # [ z e^(- z^2/2) ]\_(-oo)^(oo) = 0#

# = 1/sqrt(2 pi) int_(-oo)^(oo) dz \ e^(- z^2/2) #

This integral is well known. It can be done using a polar sub, but here the result is stated.

# Var(z) = 1/sqrt(2 pi) sqrt(2 pi) = 1 #