What is the vertex form of # 4y = x(x+12)+13 #?

1 Answer
Dec 25, 2015

#y=1/4(x-(-6))^2+(-6)#
#color(white)("XXXXXXXXXXX")#with vertex at #(-6,-6)#

Explanation:

The general vertex form is
#color(white)("XXX")y=m(x-a)^2+b#
with vertex at #(a,b)#

Given:
#color(white)("XXX")4y=x(x+12)+13#
Expand the right side
#color(white)("XXX")4y=x^2+12x+13#
Complete the square
#color(white)("XXX")4y=x^2+12xcolor(green)(+6^2)+13color(green)(-36)#
Rewrite as a squared binomial (and combine the constant)
#color(white)("XXX")4y=(x+6)^2-24#
Divide both sides by #4#
#color(white)("XXX")y=1/4(x-(-6))^2+(-6)#