What is the vertex form of #5y = 11x^2-15x-9#?

1 Answer
Apr 10, 2017

#y=11/5(x-15/22)^2-621/220#

Explanation:

Vertex form of such equation is #y=a(x-h)^2+k#, with #(h,k)# as vertex.

Here we have #5y=11x^2-15x-9#

or #y=11/5x^2-3x-9/5#

or #y=11/5(x^2-3xx5/11x)-9/5#

#=11/5(x^2-2xx15/22 x+(15/22)^2-(15/22)^2)-9/5#

#=11/5(x-15/22)^2-(15/22)^2xx11/5-9/5#

#=11/5(x-15/22)^2-45/44-9/5#

#=11/5(x-15/22)^2-(45xx5+44xx9)/220#

#=11/5(x-15/22)^2-(225+396)/220#

#=11/5(x-15/22)^2-621/220#

and vertex is #(15/22,-621/220)#

graph{5y=11x^2-15x-9 [-4.667, 5.333, -4.12, 0.88]}