What is the vertex form of y=-1/3(x-2)(2x+5) ?

1 Answer

The Vertex Form is (x--1/4)^2=-3/2*(y-27/8)

Explanation:

We start from the given
y=-1/3(x-2)(2x+5)
Expand first
y=-1/3(2x^2-4x+5x-10)
simplify
y=-1/3(2x^2+x-10)
insert a 1=2/2 to make factoring of 2 clear

y=-1/3(2x^2+2/2x-10)

now, factor out the 2

y=-2/3(x^2+x/2-5)
complete the square now by adding 1/16 and subtracting 1/16 inside the grouping symbol

y=-2/3(x^2+x/2+1/16-1/16-5)

the first 3 terms inside the grouping symbol is now a Perfect Square Trinomial so that the equation becomes

y=-2/3((x+1/4)^2-81/16)
Distribute the -2/3 inside the grouping symbol
y=-2/3(x+1/4)^2-2/3(-81/16)

y=-2/3(x--1/4)^2+27/8
let us simplify now to the Vertex Form

y-27/8=-2/3(x--1/4)^2

Finally

(x--1/4)^2=-3/2(y-27/8)

graph{(x--1/4)^2=-3/2(y-27/8)[-20,20,-10,10]}

God bless...I hope the explanation is useful..