What is the vertex form of #y=12.25x^2 - 52.5x +110.25?

1 Answer
Mar 13, 2016

color(blue)( y=49/4(x- 15/7)^2 +216/4)

Explanation:

Given:

color(green)(y=12.25x^2-52.5x+110.25)
'~~~~~~~~~~~~~~~~~~~~~~~~~~
Write as:

color(blue)(" "y=49/4x^2 -105/2x+ 441/4)

color(brown)("Factor out "49/4)

color(blue)(" "y=49/4(x^2- 30/7x) +441/4)

color(brown)("Consider just the right hand side")

color(brown)(Apply "1/2xx-30/7x = -15/7x)

color(blue)(" "49/4(x^2- 15/7x) +441/4)

color(brown)("Remove the "x" from " -15/7x)

color(blue)(" "49/4(x^2- 15/7) +441/4)

color(brown)("Move the index of 2 from "x^2" to outside the bracket")

color(blue)(" "49/4(x- 15/7)^2 +441/4)

color(brown)("Now add the correction that compensates for the error we")
color(brown)("introduced by changing the brackets content.")

color(brown)("Let "k" be a constant")

color(blue)(" "y=49/4(x- 15/7)^2 +441/4+ k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider the -15/7 from inside the brackets

Then (-15/7)^2+k=0

=> k = -49/4(15/7)^2 =-56 1/4=-225/4

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(brown)(y=49/4(x- 15/7)^2 +441/4+ k

Becomes
color(blue)( y=49/4(x- 15/7)^2 +441/4-225/4)

color(blue)( y=49/4(x- 15/7)^2 +216/4)

Tony B