What is the vertex form of y = 12x^2 - 6x + 8y=12x26x+8?

1 Answer
Nov 30, 2015

y = 12(x + frac(1)(4))^2 + frac(29)(4)y=12(x+14)2+294

Explanation:

You can get this equation into vertex form by completing the square

First, factor out the coefficient of the largest power of x:
y = 12(x^2 - frac(1)(2)x) + 8y=12(x212x)+8

then take half of the coefficient of the x to the first power and square it
frac(1)(2) * frac(1)(2) = frac(1)(4) rightarrow frac(1)(4)^2 = frac(1)(16)1212=14142=116

add and subtract the number you just found within the parenthesis
y = 12(x^2 + frac(1)(2)x + frac(1)(16) - frac(1)(16)) + 8y=12(x2+12x+116116)+8

take the negative frac(1)(16)116 out of the parenthesis
y = 12(x^2 + frac(1)(2)x + frac(1)(16)) - frac(3)(4) + 8y=12(x2+12x+116)34+8

factor and simplify
y = 12(x + frac(1)(4))^2 + frac(29)(4)y=12(x+14)2+294 leftarrow answer