What is the vertex form of #y=13x^2 +3x- 36 #?
1 Answer
vertex form:
Explanation:
1. Factor 13 from the first two terms.
#y=13x^2+3x-36#
#y=13(x^2+3/13x)-36#
2. Turn the bracketed terms into a perfect square trinomial.
When a perfect square trinomial is in the form
#y=13(x^2+3/13x+(3/13x-:2)^2)-36#
#y=13(x^2+3/13x+9/676)-36#
3. Subtract 9/676 from the perfect square trinomial.
You cannot just add
#y=13(x^2+3/13x+9/676# #color(red)(-9/676))-36#
4. Multiply -9/676 by 13.
The next step is to bring
#y=color(blue)13(x^2+3/13x+9/676)-36[color(red)((-9/676))*color(blue)((13))]#
5. Simplify.
#y=(x^2+3/13x+9/676)-36-9/52#
#y=(x^2+3/13x+9/676)-1881/52#
6. Factor the perfect square trinomial.
The last step is to factor the perfect square trinomial. This will allow you to determine the coordinates of the vertex.
#color(green)(y=(x+3/26)^2-1881/52)#