What is the vertex form of y=13x^2 +3x- 36 y=13x2+3x−36?
1 Answer
vertex form:
Explanation:
1. Factor 13 from the first two terms.
y=13x^2+3x-36y=13x2+3x−36
y=13(x^2+3/13x)-36y=13(x2+313x)−36
2. Turn the bracketed terms into a perfect square trinomial.
When a perfect square trinomial is in the form
y=13(x^2+3/13x+(3/13x-:2)^2)-36y=13(x2+313x+(313x÷2)2)−36
y=13(x^2+3/13x+9/676)-36y=13(x2+313x+9676)−36
3. Subtract 9/676 from the perfect square trinomial.
You cannot just add
y=13(x^2+3/13x+9/676y=13(x2+313x+9676 color(red)(-9/676))-36−9676)−36
4. Multiply -9/676 by 13.
The next step is to bring
y=color(blue)13(x^2+3/13x+9/676)-36[color(red)((-9/676))*color(blue)((13))]y=13(x2+313x+9676)−36[(−9676)⋅(13)]
5. Simplify.
y=(x^2+3/13x+9/676)-36-9/52y=(x2+313x+9676)−36−952
y=(x^2+3/13x+9/676)-1881/52y=(x2+313x+9676)−188152
6. Factor the perfect square trinomial.
The last step is to factor the perfect square trinomial. This will allow you to determine the coordinates of the vertex.
color(green)(y=(x+3/26)^2-1881/52)y=(x+326)2−188152