What is the vertex form of y=17x^2+88x+1?
1 Answer
Jul 30, 2017
y=17(x+44/17)-1919/17
Explanation:
Given -
y=17x^2+88x+1
Vertex
x-coordinate of the vertex
x=(-b)/(2a)=(-88)/(2xx 17)=(-88)/34=(-44)/17
y-coordinate of the vertex
y=17((-44)/17)^2+88((-44)/17)+1
y=17((1936)/289)-3872/17+1
y=32912/289-3872/17+1
y=(32912-65824+289)/289=(-32623)/289=(-1919)/17
The vertex form of the equation is
y=a(x-h)^2+k
a=17 coefficient ofx^2
h=(-44)/17 x coordinate of the vertex
k=(-1919)/17 y-coordinate of the vertex
y=17(x+44/17)-1919/17