What is the vertex form of y = −25x^2 − 4x+3 y=25x24x+3?

1 Answer
Jan 27, 2016

y = -25(x+2/25)^2 - 129/625y=25(x+225)2129625

Explanation:

The equation needs to be rewritten into the form y = a(x-h)^2 +ky=a(xh)2+k, where (h,k)(h,k) is the vertex.

y=-25(x^2 +4/25x -3/25)y=25(x2+425x325)

y = -25(x+2/25)^2 -4/625 -3/25y=25(x+225)24625325

y = -25(x+2/25)^2 - 129/625y=25(x+225)2129625

The vertex is (-2/25,-129/625)(225,129625)