What is the vertex form of y=(2x-9)(3x-1)?

1 Answer
Sep 9, 2017

y=6(x-29/24)^2-625/24

Explanation:

Given -

y=(2x-9)(3x-1)

Vertex form of the equation is -

y=a(x-h)^2+k

Find the vertex first -

y=6x^2-27x-2x+9
y=6x^2-29x+9

x coordinate of the vertex
x=(-b)/(2a)

x=(-(-29))/(2xx6)=29/12

y-coordinate of the vertex

y=6(29/12)^2-29(29/12)+9
y=6(841/144)-841/12+9
y=5046/144-841/12+9
y=(5046-10092+1296)/144=-3750/144=-625/24
Vertex (29/12, -625/24)

a=6 [coefficient of x^2]
h=29/12 [x coordinae of the vertex]
k=-625/24

The vertex form of the parabola equation is -

y=6(x-29/24)^2+((-625)/24)
y=6(x-29/24)^2-625/24