What is the vertex form of y=(2x-9)(3x-1)?
1 Answer
Sep 9, 2017
y=6(x-29/24)^2-625/24
Explanation:
Given -
y=(2x-9)(3x-1)
Vertex form of the equation is -
y=a(x-h)^2+k
Find the vertex first -
y=6x^2-27x-2x+9
y=6x^2-29x+9
x coordinate of the vertex
x=(-(-29))/(2xx6)=29/12
y-coordinate of the vertex
y=6(29/12)^2-29(29/12)+9
y=6(841/144)-841/12+9
y=5046/144-841/12+9
y=(5046-10092+1296)/144=-3750/144=-625/24
Vertex(29/12, -625/24)
a=6 [coefficient ofx^2 ]
h=29/12 [x coordinae of the vertex]
k=-625/24
The vertex form of the parabola equation is -
y=6(x-29/24)^2+((-625)/24)
y=6(x-29/24)^2-625/24