What is the vertex form of y=4/5x^2-3/8x+3/8y=45x238x+38?

1 Answer
Dec 4, 2017

y=(x-15/64)^2+339/1024y=(x1564)2+3391024

Explanation:

"the equation of a parabola in "color(blue)"vertex form"the equation of a parabola in vertex form is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))

"where "(h,k)" are the coordinates of the vertex and a"
"is a multiplier"

"given the equation in standard form "ax^2+bx+c

"then the x-coordinate of the vertex is"

•color(white)(x)x_(color(red)"vertex")=-b/(2a)

y=4/5x^2-3/8x+3/8" is in standard form"

"with "a=4/5,b=-3/8 and "c=3/8

rArrx_(color(red)"vertex")=-(-3/8)/(8/5)=15/64

"substitute this value into the equation for y"

y=4/5(15/64)^2-3/8(15/64)+3/8=339/1024

rArry=(x-15/64)^2+339/1024larrcolor(red)"in vertex form"