Vertex form is given as y = a(x+b)^2+c,
where the vertex is at (-b,c)
Use the process of completing the square.
y = 4t^2 -12t +8
y = 4(t^2 -color(blue)(3)t +2)" "larr take out the factor of 4
y = 4(t^2 -3t color(blue)( +(3/2)^2 -(3/2)^2) +2)
[color(blue)(+(3/2)^2 -(3/2)^2=0)]" "larr +(b/2)^2 -(b/2)^2
y = 4(color(red)(t^2 -3t +(3/2)^2) color(forestgreen)( -(3/2)^2 +2))
y = 4(color(red)((t-3/2)^2) color(forestgreen)( -9/4 +2))
y = 4(color(red)((t-3/2)^2) color(forestgreen)( -1/4))
Now distribute the 4 into the bracket.
y = color(red)(4(t-3/2)^2) +color(forestgreen)(4( -1/4))
y = 4(t-3/2)^2 -1