What is the vertex form of #y=4x^2-32x+63#?
1 Answer
Jan 15, 2016
#y=4(x-4)^2-1#
Explanation:
If the standard form of a quadratic equation is -
#y=ax^2+bx+c#
Then -
Its vertex form is -
#y=a(x-h)^2+k#
Where -
#a = # co-efficient of#x#
#h=(-b)/(2a)#
#k=ah^2+bh+c#
Use the formula to change it to vertex form -
#y=4x^2-32x+63#
#a=4#
#h=(-(-32))/(2 xx 4)=32/8=4#
#k=4(4)^2-32(4)+63#
#k=64-128+63#
#k=127-128=-1#
Substitute
#y=a(x-h)^2+k#
#y=4(x-4)^2-1#