What is the vertex form of y=4x232x+63?

1 Answer
Jan 15, 2016

y=4(x4)21

Explanation:

If the standard form of a quadratic equation is -

y=ax2+bx+c
Then -

Its vertex form is -

y=a(xh)2+k
Where -

a=co-efficient of x
h=b2a
k=ah2+bh+c

Use the formula to change it to vertex form -

y=4x232x+63
a=4
h=(32)2×4=328=4
k=4(4)232(4)+63
k=64128+63
k=127128=1

Substitute a=4;h=4:k=1 in

y=a(xh)2+k
y=4(x4)21