What is the vertex form of y=4x2−32x+63?
1 Answer
Jan 15, 2016
y=4(x−4)2−1
Explanation:
If the standard form of a quadratic equation is -
y=ax2+bx+c
Then -
Its vertex form is -
y=a(x−h)2+k
Where -
a= co-efficient ofx
h=−b2a
k=ah2+bh+c
Use the formula to change it to vertex form -
y=4x2−32x+63
a=4
h=−(−32)2×4=328=4
k=4(4)2−32(4)+63
k=64−128+63
k=127−128=−1
Substitute
y=a(x−h)2+k
y=4(x−4)2−1