What is the vertex form of # y= (5x-9)(3x+4)+x^2-4x#?

2 Answers
Sep 11, 2017

See below.

Explanation:

First multiply out the brackets and collect like terms:

#15x^2 - 27x + 20x - 36 + x^2 - 4x => 16x^2 - 11x - 63#

Bracket terms containing the variable:

#( 16x^2 - 11x ) - 63#

Factor out the coefficient of #x^2#:

#16( x^2 - 11/16x ) - 63#

Add the square of half the coefficient of #x# inside the bracket, and subtract the square of half the coefficient of #x# outside the bracket.

#16( x^2 - 11/16x +( 11/32)^2 ) - 63 - (11/32)^2#

Rearrange #( x^2 - 11/16x +( 11/32)^2 )# into the square of a binomial.

#16( x - 11/32 )^2 - 63 - ( 11/32)^2#

Collect like terms:

#16( x - 11/32 )^2 - 63 - ( 11/32)^2#

#16( x - 11/32 )^2 - 64633/1024#

This is now in vertex form: #a( x - h )^2 + k#
Where #h# is the axis of symmetry and #k# is the maximum or minimum value of the function.

So from example:

#h = 11/32 # and #k = -64633/1024#

Sep 11, 2017

#y=16(x-11/32)^2-2425/64#

Explanation:

#"the first step is to rearrange the parabola in standard form"#

#"that is "y=ax^2+bx+cto(a!=0)#

#"expand factors using FOIL and collect like terms"#

#y=15x^2-7x-36+x^2-4x#

#color(white)(y)=16x^2-11x-36larrcolor(red)" in standard form"#

#"the x-coordinate of vertex in standard form is"#

#x_(color(red)"vertex")=-b/(2a)#

#y=16x^2-11x-36#

#"with "a=16,b=-11,c=-36#

#rArrx_(color(red)"vertex")=-(-11)/(32)=11/32#

#"substitute this value into the equation for y"#

#y_(color(red)"vertex")=16(11/2)^2-11(11/32)-36=-2425/64#

#rArrcolor(magenta)"vertex "=(11/32,-2425/64)#

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where )h , k ) are the coordinates of the vertex and a is a multiplier.

#"here "(h,k)=(11/32,-2425/64)" and "a=16#

#rArry=16(x-11/32)^2-2425/64larrcolor(red)" in vertex form"#