What is the vertex form of y=6x^2 - 27x - 15 ?

2 Answers
Jun 11, 2017

y=6(x-9/4)^2-363/8

Explanation:

For a more detailed example of method see:

https://socratic.org/s/aFtwtRb4

y=6x^2-27x-15

y=6(x-27/(2xx6))^2+k-15

y=6(x-9/4)^2+k-15

..............................................................
'Gets rid' of the introduced error.

Set " "6(-9/4)^2+k=0

6xx81/16+k=0

k=-243/8
.........................................................

y=6(x-9/4)^2-243/8-15

y=6(x-9/4)^2-363/8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check by expanding brackets:

y=6(x^2-18/4x+81/16)-363/8

y=6x^2-27x-15

Tony BTony B

Jun 11, 2017

y=6(x-9/4)^2-363/8

Explanation:

"the equation of a parabola in "color(blue)"vertex form" is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))
where ( h , k ) are the coordinates of the vertex and a is a constant.

"for a parabola in standard form " y=ax^2+bx+c

x_(color(red)"vertex")=-b/(2a)

y=6x^2-27x-15" is in this form"

"with " a=6,b=-27" and " c=-15

rArrx_(color(red)"vertex")=-(-27)/12=27/12=9/4

"substitute this value into the function for y-coordinate"

rArry_(color(red)"vertex")=(6xx81/16)-(27xx9/4)-15

color(white)(xxxxxxx)=243/8-486/8-120/8

color(white)(xxxxxxx)=-363/8

rArr(h,k)=(9/4,-363/8)

rArry=6(x-9/4)^2-363/8larrcolor(red)" in vertex form"