y=(3x-1)(2x+11)
Multiply the brackets
y=6x^2+33x-2x-11
y=6x^2+31x-11 larr" Starting point"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Discussing what is happening")
Note that for standardised form y=ax^2+bx+c we intend to make this y=a(x+b/(2a))^2+k+c color(white)(.) larr" completed square format"
If you multiply out the whole thing we get:
y=ax^2+b x color(red)(+ a( b/(2a))^2)+k+c
The color(red)(+ a( b/(2a))^2)+k is not in the original equation.
To 'force' this back to the original equation we
set color(red)(+ a( b/(2a))^2)+k=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Returning to the solution")
y=6x^2+31x-11 color(white)("d")->color(white)("d")y=6(x+31/(6xx2))^2 +k-11
However:
color(red)(+ a( b/(2a))^2)+k=0 color(white)("d")->color(white)("dddd") color(red)(6(31/(2xx6))^2)+k=0
color(white)("dddddddddddddddd")->color(white)("dddd")31^2/(4xx6)+k=0
color(white)("dddddddddddddddd")->color(white)("dddd") k=-961/24
So we now have:
y=6x^2+31x-11 color(white)("d")->color(white)("ddd")y=6(x+31/(6xx2))^2 -1225/24
color(white)("dddddddddddddddd")->color(white)("dddd") y=6(x+31/12)^2-1225/24
Tony B