What is the vertex form of #y=(6x + 3)(x - 5) #?

1 Answer
May 30, 2017

#6 (x - frac(9)(4))^(2) - frac(363)(8)#

Explanation:

The vertex form of a quadratic equation is #a (x - h)^(2) + k#.

We have: #y = (6 x + 3)(x - 5)#

To express this equation in its vertex form, we must "complete the square".

First, let's expand the parentheses:

#Rightarrow y = 6 x^(2) - 30 x + 3 x - 15#

#Rightarrow y = 6 x^(2) - 27 x - 15#

Then, let's factor #6# out of the equation:

#Rightarrow y = 6 (x^(2) - frac(27)(6) x - frac(15)(6))#

#Rightarrow y = 6 (x^(2) - frac(9)(2) x - frac(5)(2))#

Now, let's add and subtract the square of half of the #x# term within the parentheses:

#Rightarrow y = 6 (x^(2) - frac(9)(2) x + (frac(9)(4))^(2) - frac(5)(2) - (frac(9)(4))^(2))#

#Rightarrow y = 6 ((x - frac(9)(4))^(2) - frac(5)(2) - frac(81)(16))#

#Rightarrow y = 6 ((x - frac(9)(4))^(2) - frac(121)(16))#

Finally, let's distribute #6# throughout the parentheses:

#therefore = 6 (x - frac(9)(4))^(2) - frac(363)(8)#