What is the vertex form of y=(6x + 3)(x - 5) y=(6x+3)(x5)?

1 Answer
May 30, 2017

6 (x - frac(9)(4))^(2) - frac(363)(8)6(x94)23638

Explanation:

The vertex form of a quadratic equation is a (x - h)^(2) + ka(xh)2+k.

We have: y = (6 x + 3)(x - 5)y=(6x+3)(x5)

To express this equation in its vertex form, we must "complete the square".

First, let's expand the parentheses:

Rightarrow y = 6 x^(2) - 30 x + 3 x - 15y=6x230x+3x15

Rightarrow y = 6 x^(2) - 27 x - 15y=6x227x15

Then, let's factor 66 out of the equation:

Rightarrow y = 6 (x^(2) - frac(27)(6) x - frac(15)(6))y=6(x2276x156)

Rightarrow y = 6 (x^(2) - frac(9)(2) x - frac(5)(2))y=6(x292x52)

Now, let's add and subtract the square of half of the xx term within the parentheses:

Rightarrow y = 6 (x^(2) - frac(9)(2) x + (frac(9)(4))^(2) - frac(5)(2) - (frac(9)(4))^(2))y=6(x292x+(94)252(94)2)

Rightarrow y = 6 ((x - frac(9)(4))^(2) - frac(5)(2) - frac(81)(16))y=6((x94)2528116)

Rightarrow y = 6 ((x - frac(9)(4))^(2) - frac(121)(16))y=6((x94)212116)

Finally, let's distribute 66 throughout the parentheses:

therefore = 6 (x - frac(9)(4))^(2) - frac(363)(8)