What is the vertex form of y=7x^2-9x-32?

1 Answer
Jan 17, 2016

y_("vertex form")=7(x-9/14)^2-977/28

Explanation:

Given: y=7x^2-9x-32......................(1)

Write as:

y=7(x^2-9/7x)-32

Now write as

y=7(x-[1/2xx9/7])^2-32 color(blue)(+"correction")

y=7(x-9/14)^2-32color(blue)(+"correction")..........................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider 7(x-9/14)^2
This gives: 7(x^2-9/7x+81/196)
We need the 7(x^2-9/7x) but the 7(+81/196) is an extra value we need to get rid of. This is why we have a correction. In this case the correction value is:color(blue)(7( -81/196)=-81/28)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So equation (2) becomes:

y=7(x-9/14)^2-32color(blue)(+(-81/28))..........................(2_a)

y=7(x-9/14)^2-977/28

("So " x_("vertex")=(-1)xx(-9/14)color(white)(..)=+9/14)