What is the vertex form of y=8x^2 + 19x + 12 y=8x2+19x+12?

1 Answer
Oct 16, 2016

y = 8(x - -19/16)^2 + 23/32y=8(x1916)2+2332

Explanation:

The equation is in the standard form, y = ax^2 + bx + cy=ax2+bx+c where a = 8, b = 19, and c = 12a=8,b=19,andc=12

The x coordinate, h, of the vertex is:

h = -b/(2a)h=b2a

h = -19/(2(8)) = -19/16h=192(8)=1916

To find the y coordinate, k, of the vertex, evaluate the function at the value of h:

k = 8(-19/16)(-19/16) + 19(-19/16) + 12k=8(1916)(1916)+19(1916)+12

k = (1/2)(-19)(-19/16) + 19(-19/16) + 12k=(12)(19)(1916)+19(1916)+12

k = - 19^2/32 + 12k=19232+12

k = - 361/32 + 12k=36132+12

k = - 361/32 + 384/32k=36132+38432

k = 23/32k=2332

The vertex form of the equation of a parabola is:

y = a(x - h)^2 + ky=a(xh)2+k

Substitute our values into that form:

y = 8(x - -19/16)^2 + 23/32y=8(x1916)2+2332