Given: " "y=8x^2-6x+128 ..........(1)
Write as " "y=8(x^2-6/8x)+128
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Now we start to change things a step at a time.")
color(green)("Change the bracket so that this part becomes:")
8{x-(1/2 xx6/8)}^2
color(green)("Now put back the constant giving:")
8{x-(1/2 xx6/8)}^2 +128
color(green)("But this change has introduced an error so we can not yet equate it") color(green)("to "y.)
y!= 8{x-(1/2 xx6/8)}^2 +128
color(green)("We fix that by adding another constant ( say k ) giving:")
y=8{x-(1/2 xx6/8)}^2 +128+k .........................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("To find the value of "k)
color(green)("Equate (2) to (1) through "y)
8{x-(1/2 xx6/8)}^2 +128+k" " =" "8x^2-6x+128
8(x^2-3/8x-3/8x+9/64)+128+k" "=" "8x^2-6x+128
cancel(8x^2)-cancel(6x)+9/8+cancel(128)+k" "=" "cancel(8x^2)-cancel(6x)+cancel(128)
k=-9/8 ....................................(3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (3) into (2)
color(blue)(y_("vertex form")=8(x-3/8)^2+ 126 7/8
Note" " 3/8 = 0.375
So
color(blue)(" "x_("vertex") = (-1)xx(-3/8) = + 0.375)
color(blue)(" "y_("vertex")= 126 7/8 = 126.875
Tont B