What is the vertex form of y= (9x-6)(3x+2)+4x^2+5x?

1 Answer
Apr 25, 2017

y=31(x+5/62)^2-1513/124

Explanation:

y=(9x-6)(3x+2)+4x^2+5x

= 27x^2+18x-18x-12+4x^2+5x

= 31x^2+5x-12

= 31(x^2+5/31x)-12

= 31(x^2+2xx5/62xx x+(5/62)^2-(5/62)^2)-12

= 31(x+5/62)^2-31(5/62)^2-12

= 31(x+5/62)^2-25/124-12

or y=31(x+5/62)^2-12 25/124

i.e. y=31(x+5/62)^2-1513/124

and vertex is (-5/62,-12 25/124)

graph{y=31(x+5/62)^2-1513/124 [-3, 3, -20, 20]}