What is the vertex form of y=-x^2-2x+3 y=x22x+3?

1 Answer
Dec 7, 2015

y=(-1)(x-(-1))^2+4y=(1)(x(1))2+4

Explanation:

The vertex form of a quadratic is
color(white)("XXX")y=m(x-color(red)(a))^2+color(blue)(b)color(white)("XXX")XXXy=m(xa)2+bXXXwith vertex at (color(red)(a),color(blue)(b))(a,b)

Given y=-x^2-2x+3y=x22x+3

Extract the mm factor from the terms including an xx
color(white)("XXX")y= (-1)(x^2+2x) +3XXXy=(1)(x2+2x)+3

Complete the square:
color(white)("XXX")y=(-1)(x^2+2x+1-1) +3XXXy=(1)(x2+2x+11)+3

color(white)("XXX")y=(-1)(x^2+2x+1) +1 +3XXXy=(1)(x2+2x+1)+1+3

color(white)("XXX")y=(-1)(x+1)^2 + 4XXXy=(1)(x+1)2+4

color(white)("XXX")y=(-1)(x-(color(red)(-1)))^2+color(blue)(4)XXXy=(1)(x(1))2+4
which is the graph{-x^2-2x+3 [-6.737, 5.753, -0.565, 5.675]} vertex form with vertex at (color(red)(-1),color(blue)(4))(1,4)