What is the vertex form of y= x^2/3 + 7x + 2 y=x23+7x+2?

1 Answer
Jun 26, 2017

In vertex form : y=1/3(x+21/2)^2 -417/12y=13(x+212)241712

Explanation:

y=x^2/3+7x+2y=x23+7x+2 or

y= 1/3(x^2+21x) +2 or y= 1/3(x^2+21x +(21/2)^2) -(1/3*21^2/4)+2y=13(x2+21x)+2ory=13(x2+21x+(212)2)(132124)+2 or

y=1/3(x+21/2)^2 -441/12 +2 or y=1/3(x+21/2)^2 -417/12y=13(x+212)244112+2ory=13(x+212)241712

In vertex form : y=1/3(x+21/2)^2 -417/12y=13(x+212)241712

Vertex is at (-21/2, -417/12)(212,41712)
graph{x^2/3+7x+2 [-80, 80, -40, 40]} [Ans]