What is the vertex form of y= x^2-3x-28 ?

1 Answer
Feb 1, 2016

color(blue)"Shortcut method - by sight")

Given -> y=x^2-3x-28 .......................................(1)

y=(x-3/2)^2-3/4-28

y=(x-3/2)^2-121/4

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(purple)("Fuller explanation")

color(blue)("Step 1")

Write as" " y=(x^2-3x)-28

color(brown)("Divide the brackets contents by "x". These means that the right")color(brown)("hand side is no longer equal to "y)

y!=(x-3)-28

color(brown)("square the brackets")

y!=(x-3)^2-28

color(brown)("Halve the -3 from "(x-3))

y!=(x-3/2)^2-28
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 2")

color(brown)("Changing the equation so that it does equal "y)

Let a constant of correction be k then

y=(x-3/2)^2-28 + k...................................(2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3")

color(brown)("To find the value of k")

color(green)("As equation (1) and equation (2) both equal y we can equate them") color(green)("to each other through y")

Equation (1) = y = Equation (2)

x^2-3x-28" "=" "(x-3/2)^2-28+k

cancel(x^2)-cancel(3x)-cancel(28)" "=" "cancel(x^2)-cancel(3x)+9/4-cancel(28)+k

k=-9/4......................................................(3)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4 - last move!")

color(brown)("Bringing it all together to give the final equation")

Substitute equation (3) into equation (2)

y=(x-3/2)^2-28 -9/4.

But -28-9/4 = -121/4 giving

color(green)(y=(x-3/2)^2-121/4.