What is the vertex form of y=-x^2+5xy=−x2+5x?
2 Answers
Explanation:
To find the vertex form, you need to complete the square:
y=-(x-5/2)^2+25/4y=−(x−52)2+254
Explanation:
Given -
y=-x^2+5xy=−x2+5x
Vertex
x=(-b)/(2a)=(-5)/(-1xx2)=5/2x=−b2a=−5−1×2=52
At
y=-(5/2)^2+5(5/2)=-25/4+25/2=(-25+50)/4=25/4y=−(52)2+5(52)=−254+252=−25+504=254
Vertex
The vertex form of the quadratic equation is -
y=a(x-h)^2+ky=a(x−h)2+k
Where -
a=-1a=−1 - coefficient ofx^2x2
h=5/2h=52 - x - coordinate of the vertex
k=25/4k=254 - y - coordinate of the vertex
Substitute these values in the formula
y=-1(x-5/2)^2+25/4y=−1(x−52)2+254
y=-(x-5/2)^2+25/4y=−(x−52)2+254