What is the vertex form of y=-x^2+5xy=x2+5x?

2 Answers
Dec 21, 2017

(x - 5/2)^2 - 25/4(x52)2254

Explanation:

To find the vertex form, you need to complete the square:

-x^2 + 5xx2+5x
= x^2 - 5x=x25x
= x^2 - 5x + (5/2)^2 - (5/2)^2=x25x+(52)2(52)2
= (x - 5/2)^2 - (5/2)^2=(x52)2(52)2
= (x - 5/2)^2 - 25/4=(x52)2254

Dec 21, 2017

y=-(x-5/2)^2+25/4y=(x52)2+254

Explanation:

Given -

y=-x^2+5xy=x2+5x

Vertex

x=(-b)/(2a)=(-5)/(-1xx2)=5/2x=b2a=51×2=52

At x=5/2x=52;

y=-(5/2)^2+5(5/2)=-25/4+25/2=(-25+50)/4=25/4y=(52)2+5(52)=254+252=25+504=254

Vertex (5/2, 25/4)(52,254)

The vertex form of the quadratic equation is -

y=a(x-h)^2+ky=a(xh)2+k

Where -

a=-1a=1 - coefficient of x^2x2
h=5/2h=52 - x - coordinate of the vertex
k=25/4k=254 - y - coordinate of the vertex

Substitute these values in the formula

y=-1(x-5/2)^2+25/4y=1(x52)2+254

y=-(x-5/2)^2+25/4y=(x52)2+254