What is the vertex form of y= x^2 +8x +16?

1 Answer
Apr 26, 2016

color(blue)(y=(x+4)^2)

Explanation:

Consider the standard for " "y=ax^2+bx+c

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Scenario 1:" -> a=1)" " (as in your question)

Write as
y=(x^2+bx)+c

Take the square outside the bracket.
Add a correction constant k ( or any letter you so chose)

y=(x+bx)^2+c +k

Remove the x from b x

y=(x + b)^2+c+k

Halve b

y=(x+b/2)^2+c+k

Set the value of k =(-1)xx(b/2)^2

y=(x+b/2)^2+c-(b/2)^2

Substituting the value gives:

y=(x+8/2)^2+16-16

color(blue)(y=(x+4)^2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By changing the brackets content so that it has b/2 and then squaring b/2 you introduce a value that was not in the original equation. So you remove this using k and thus returning the whole to its original inherent value.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Scenario 2:" -> a !=1)

Write as
y=a(x^2+b/(2a)x)+c+k

and you end up with

y=a(x+b/(2a))^2+c+k

In this case k=(-1)xx ((ab)/(2a))^2 = -(b/2)^2

y=a(x+b/(2a))^2+c-(b/2)^2
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~