What is the vertex form of #y= x^2-x-56 #?
1 Answer
Jul 6, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"for a parabola in standard form " y=ax^2+bx+c#
#"the x-coordinate of the vertex is "#
#x_(color(red)"vertex")=-b/(2a)#
#y=x^2-x-56" is in standard form"#
#"with " a=1,b=-1,c=-56#
.>
#"substitute into function for y-coordinate of vertex"#
#rArry_(color(red)"vertex")=(1/2)^2-1/2-56=-225/4#
#rArrcolor(magenta)"vertex" =(1/2,-225/4)#
#rArry=(x-1/2)^2-225/4larrcolor(red)" in vertex form"#