What is the vertex form of #y= x^2-x-56 #?

1 Answer
Jul 6, 2017

# y=(x-1/2)^2-225/4#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#"for a parabola in standard form " y=ax^2+bx+c#

#"the x-coordinate of the vertex is "#

#x_(color(red)"vertex")=-b/(2a)#

#y=x^2-x-56" is in standard form"#

#"with " a=1,b=-1,c=-56#

.>#rArrx_(color(red)"vertex")=-(-1)/2=1/2#

#"substitute into function for y-coordinate of vertex"#

#rArry_(color(red)"vertex")=(1/2)^2-1/2-56=-225/4#

#rArrcolor(magenta)"vertex" =(1/2,-225/4)#

#rArry=(x-1/2)^2-225/4larrcolor(red)" in vertex form"#