What is the vertex form of #y=x^2-x-72 #?

1 Answer
Jul 24, 2016

#y=(x-1/2)^2-72 1/4#

Explanation:

Given

#y=x^2-x-72#

Find the Vertex

X-cordinate of the vertex

#x=(-b)/(2a)=(-(-1))/(2xx1)=1/2#
At #x=1/2; y=(1/2)^2-1/2-72=1/4-1/2-72=-72 1/4#

Vertex for of the quardratic equation is

#y=a(x-h)+k#

Where #h# is #x#cordinate and #k# is #y# coordinate
#a# is the coefficient of #x^2#

#h=1/2#
#k=-72 1/4#
#a=1#

Substitute these values in the formula

#y=(x-1/2)^2-72 1/4#

enter link description here