What is the vertex form of #y=x^2-x-72 #?
1 Answer
Jul 24, 2016
#y=(x-1/2)^2-72 1/4#
Explanation:
Given
#y=x^2-x-72#
Find the Vertex
X-cordinate of the vertex
#x=(-b)/(2a)=(-(-1))/(2xx1)=1/2#
At#x=1/2; y=(1/2)^2-1/2-72=1/4-1/2-72=-72 1/4#
Vertex for of the quardratic equation is
#y=a(x-h)+k#
Where
#h=1/2#
#k=-72 1/4#
#a=1#
Substitute these values in the formula
#y=(x-1/2)^2-72 1/4#