For a more detailed explanation of method see the example of
http://socratic.org/s/asZq2L8h .Different values but the method is sound.
Given:" "y=(x+21)(x+1)
Let k be the error correcting constant
Multiply out giving
" "y=x^2+22x+21
y=(x^(color(magenta)(2))+22x)+21+k" "color(brown)("No error yet so k=0 at this stage")
Move the power to outside the bracket
y=(x+22color(green)( x))^(color(magenta)(2)) +21+k" "color(brown)("Now we have the error "->k!=0 )
Remove the x from 22color(green)(x)
" "y=(x+color(red)(22))^2+21+k
Multiply color(red)(22)" by "(1/2) =color(blue)(11 )
" "color(green)(y=(x+color(red)(22))^2+21+k)
"changes to "color(green)(y=(x+color(blue)(11))^2+21+k)
The error introduced is (axxb/2)^2 ->(1xx22/2)^2 =+ 121
So k = -121 to 'get rid' of the error
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So
" "color (magenta)( y=(x+color(blue)(11))^2+21)-121
" "y=(x+11)^2-100
" "color(blue)("Vertex "-> (x,y)->(-11,-100)