What is the vertex form of y= y=x^2+5x-36?

2 Answers

The vertex form y--169/4=(x--5/2)^2
with vertex at (h, k)=(-5/2, -169/4)

Explanation:

From the given equation y=x^2+5x-36

complete the square

y=x^2+5x-36
y=x^2+5x+25/4-25/4-36

We group the first three terms

y=(x^2+5x+25/4)-25/4-36

y=(x+5/2)^2-25/4-144/4

y=(x+5/2)^2-169/4

y--169/4=(x--5/2)^2

graph{y+169/4=(x--5/2)^2[-100, 100,-50,50]}

God bless...I hope the explanation is useful.

Mar 31, 2016

y = (x + 5/2)^2 - 169/4

Explanation:

x-coordinate of vertex:
x = -b/(2a) = -5/2
y-coordinate of vertex:
y(-5/2) = (25/4) - 25/2 - 36 = -25/4 - 36 = -169/4.
Vertex (-5/2, - 169/4)
Vertex form: y = (x + 5/2)^2 - 169/4