What is the vertex of y= -x^2-x-(3x+2)^2y=−x2−x−(3x+2)2?
1 Answer
Expand
Explanation:
graph{-x^2-x-(3x+2)^2 [-1.5, 0.5, -0.5, 1.5]}
It looks like this with an
-x^2 - x - 9x^2 - 4 - 12x−x2−x−9x2−4−12x
= -10x^2 - 13x -4=−10x2−13x−4
Luckily, if we plug in
y = -10x^2 - 13x -4y=−10x2−13x−4
-y/10 = x^2 + 1.3x + 0.4−y10=x2+1.3x+0.4
-y/10 + 0.0225 = x^2 + 1.3y + 0.4225−y10+0.0225=x2+1.3y+0.4225
-y/10 + 0.0225 = (x+0.65)^2−y10+0.0225=(x+0.65)2
-y/10 =(x+0.65)^2 - 0.0225−y10=(x+0.65)2−0.0225
y = -10(x+0.65)^2 + 0.225y=−10(x+0.65)2+0.225
So the vertex would be