What is x if ln(3x^2) + ln(x^4) + ln(7) =0?

2 Answers
Mar 27, 2018

Use the logarithm laws.

ln(3x^2 * x^4 * 7) = 0

21x^6 = e^0

x^6 = 1/21

x = +-root(6)(1/21)

Hopefully this helps!

Mar 27, 2018

The solutions are x=+-root6(1/21).

(or x=+-21^(-1/6).)

Explanation:

Use this logarithm rule:

log_color(green)a(color(red)x)+log_color(green)a(color(blue)y)=log_color(green)a(color(red)x*color(blue)y)

Here's this rule applied to our equation:

ln(color(red)(3x^2))+ln(color(blue)(x^4))+ln(color(green)7)=0

ln(color(red)(3x^2)*color(blue)(x^4))+ln(color(green)7)=0

ln(color(red)3color(purple)(x^6))+ln(color(green)7)=0

ln(color(red)3color(purple)(x^6)*color(green)7)=0

ln(color(brown)21color(purple)(x^6))=0

log_e(color(brown)21color(purple)(x^6))=0

Convert to exponential form:

e^0=21x^6

1=21x^6

1/21=x^6

root6(1/21)=x

Since the root is an even power, we add a plus-or-minus sign:

x=+-root6(1/21)

x=+-root6(21^-1)

x=+-(21^-1)^(1/6)

x=+-21^(-1/6)

You can check using a graphing calculator:

![https://www.desmos.com/calculator](useruploads.socratic.orguseruploads.socratic.org)

Since the values of the zeroes are the same as our answer, we are correct. Hope this helped!