What is x if log3(2x1)=2+log3(x4)?

2 Answers
Nov 26, 2015

x=5

Explanation:

We will use the following:

  • loga(b)loga(c)=loga(bc)
  • aloga(b)=b

log3(2x1)=2+log3(x4)

log3(2x1)log3(x4)=2

log3(2x1x4)=2

3log3(2x1x4)=32

2x1x4=9

2x1=9x36

7x=35

x=5

Nov 26, 2015

I found: x=5

Explanation:

We can start writing it as:
log3(2x1)log3(x4)=2
use the property of the logs: logxlogy=log(xy) and write:
log3(2x1x4)=2
use the definition of log:
logbx=ax=ba
to get:
2x1x4=32 rearranging:
2x1=9(x4)
2x9x=36+1
7x=35
x=357=5