What is x if log_4 x= 1/2 + log_4 (x-1)?

2 Answers
May 1, 2018

x=2

Explanation:

As log_4 x= 1/2 + log_4 (x-1)

log_4x-log_4(x-1)=1/2

or log_4(x/(x-1))=1/2

i.e. x/(x-1)=4^(1/2)=2

and x=2x-2

i.e. x=2

May 1, 2018

x=2.

Explanation:

log_4x=1/2+log_4(x-1).

:. log_4 x-log_x(x-1)=1/2.

:. log_4{x/(x-1)}=1/2...[because, log_bm-log_bn=log_b(m/n)].

:. {x/(x-1)}=4^(1/2)=2,...[because," the definition of "log].

:. x=2(x-1)=2x-2.

:. -x=-2, or, x=2.

This root satisfy the given eqn.

:. x=2.