What is x if log(7x-10) - 3 log(x)= 2 log(7x10)3log(x)=2?

1 Answer
Nov 29, 2015

Not solved, but got it in the general cubic equation form.

Explanation:

Here is my attempt to solve it.
Assuming loglog is log_10log10:

log(7x-10)-3log(x)=2log(7x10)3log(x)=2

becomes:

log(7x-10)-log(x^3)=2log(7x10)log(x3)=2

log( (7x-10)/(x^3) ) =2log(7x10x3)=2

(7x-10)/(x^3) = 10^27x10x3=102

7x-10=100x^37x10=100x3

100x^3 -7x+10=0100x37x+10=0

x^3-(7)/(100)x + 1/10 =0x37100x+110=0

Here we have the same equation in cubic form.
Then you're on your own to solve this.
It is way too long to describe the calculations here and may involve complex roots (you could first compute the discriminant Delta to see how many roots it has).