What's the derivative of arctan(6^x)?

1 Answer
Jun 24, 2016

y' = ( ln(6) 6^x)/( 1 + 6^{2x} )

Explanation:

y=arctan(6^x)
tan y=6^x
sec^2 y \ y' = (6^x)'

z = 6^x
ln z = x ln(6)
1/z z' = ln(6)
z' = ln(6) 6^x

\implies sec^2 y \ y' = ln(6) 6^x

y' = ( ln(6) 6^x)/( sec^2 y)

using tan^2 +1 = sec^2

y' = ( ln(6) 6^x)/( 1 + 6^{2x} )