What's the derivative of arctan(e^x)?
1 Answer
Explanation:
Let
Differentiate Implicitly wrt
sec^2 y dy/dx = e^x ... [1]
Using the
sec^2y = 1 + tan^2y
:. sec^2y = 1 + (e^x)^2
:. sec^2y = 1 + e^(2x)
Substituting this result into [1] we get:
(1 + e^(2x))dy/dx=e^x
Hence,
dy/dx=e^x/(1 + e^(2x))