What's the derivative of arctan(e^x)?

1 Answer
Dec 1, 2016

d/dx arctan(e^x) = e^x/(1 + e^(2x))

Explanation:

Let y = arctan(e^x) iff tany=e^x

Differentiate Implicitly wrt x:

sec^2 y dy/dx = e^x ... [1]

Using the tan"/"sec trig identity:

sec^2y = 1 + tan^2y
:. sec^2y = 1 + (e^x)^2
:. sec^2y = 1 + e^(2x)

Substituting this result into [1] we get:

(1 + e^(2x))dy/dx=e^x

Hence,

dy/dx=e^x/(1 + e^(2x))