What's the derivative of arctan(x)^(1/2)?

1 Answer
Jun 21, 2016

so \ y' = \frac{1}{2 \sqrt x} .\frac{1}{x+1 }

Explanation:

let \tan y = x^(1/2)

so \sec^2 y \ y' = \frac{1}{2 \sqrt x}

using the tan^2 + 1 = sec^2 identity, sec^2 y = tan^2 y + 1 = x + 1

so \ y' = \frac{1}{2 \sqrt x} \frac{1}{\sec^2 y } = \frac{1}{2 \sqrt x} .\frac{1}{x+1 }