What should I put for using the integral test to determine whether the series is convergent or divergent?

DIVERGES and DIVERGENT doesn't work.

enter image source here

~~~~~~~~~~~~~~~~~

enter image source here

1 Answer
Jul 2, 2017

The series:

#sum_(n=1)^oo a_n = sum_(n=1)^oo n/(n^2+5)#

is divergent.

Explanation:

Based on the integral test, the convergence of the series:

#sum_(n=1)^oo a_n = sum_(n=1)^oo n/(n^2+5)#

is equivalent to the convergence of the improper integral:

#int_1^oo x/(x^2+5)dx#

as the function #f(x) = x/(x^2+5)# in the interval #[1,+oo)# is positive, monotone decreasing and:

#f(n) = a_n#

Evaluate the indefinite integral:

#int x/(x^2+5) dx = 1/2int (d(x^2+5))/(x^2+5) =1/2ln(x^2+5) + C#

then:

#int_1^oo x/(x^2+5)dx = lim_(x->oo) 1/2ln(x^2+5) - 1/2ln6 = +oo#

So the series is divergent.