Whats the derivative of ln((e^x)/(1+e^x))?

1 Answer
Jun 21, 2016

1/(1+e^x)

Explanation:

y = ln((e^x)/(1+e^x)) = ln (u), \qquad u = (e^x)/(1+e^x)

and we use the chain rule dy/dx = dy/(du) * (du)/dx

dy/(du) = 1/u = (1+ e^x)/(e^x)

from quotient rule:

(du)/(dx) = (e^x (1+ e^x) - e^x * e^x)/(1+e^x)^2
= (e^x )/(1+e^x)^2

\implies (dy)/(dx) = (1+ e^x)/(e^x) * (e^x )/(1+e^x)^2 = 1/(1+e^x)