Write an equation equivalent to the one below by writing  the trinomial as a perfect square trinomial. #x^2 ­ - 4x + 1 = 0# ?

A: # x^2 - 4x + 4 = -3#

B: # x^2 - ­ 4x + 5 = 0#

C: # x^2 ­- 4x + 4 = ­3#

D: # x^2 ­- 4x + 4 = ­5#

2 Answers
Feb 28, 2018

C

Explanation:

Look at https://socratic.org/s/aNNKeJ73 for an in-depth explanation of the steps for completing the square,

Given #x^2-4x+1=0#

half of the 4 from #-4x# is 2 so we have

#(xcolor(red)(-2))^2+k+1=0# where #k# is some constant

Set #(color(red)(-2))^2+k=0 => k=-4#

Thus we have

#(x-2)^2-4+1=0#

#ubrace(color(white)("d")(x-2)^2color(white)("d"))color(white)("ddd")-3=0 larr" Completing the square"#
#x^2-4x+4color(white)("dd")-3=0#

Add #3# to both sides

#x^2+4x+4=3 larr" Option C"color(red)( larr "Corrected from option D")#

Feb 28, 2018

Option #C#

Explanation:

This is by a process known as 'completing the square'

You need to add in a missing value so that you have a trinomial which is a perfect square.

The missing term is #(b/2)^2#

#x^2 -color(blue)(4)x +1 =0" "larr (b=color(blue)(-4))#

#x^2 -4x + ((color(blue)(-4))/2)^2 = -1+((color(blue)(-4))/2)^2#

#x^2 -4x +4 = -1+4#

#x^2 -4x +4 = 3#

the left side is now equal to #(x-2)^2#, a perfect square

So option #C# is the one you want.