y^{'''}-3y^{''}+2y^'=\frac{e^{2x}}{1+e^x}?

Course: Differential Equations with Linear Algebra

(don't use Linear Algebra please)

1 Answer
Dec 18, 2017

y=c_1+c_2e^x+c_3e^(2x)+1/2e^x-1/2Ln(e^x-1)*(2e^x-1)-1/2e^(2x)(x-Ln(e^x+1))

Explanation:

Characteristic equation of differential equation is: r^3-3r^2+2r=0 or r*(r-1)*(r-2)=0

Its roots are r_1=0, r_2=1 and r_3=2

Consequently homogeneous solution of it,

y_h=c_1+c_2*e^x+c_3*e^(2x)

I use variation of parameters for particular solution of it,

y_p=u_1*1+u_2*e^x+u_3*e^(2x)=u_1+u_2*e^x+u_3*e^(2x)

Now, I have to solve these equation system,

(u_1)'*1+(u_2)'*e^x+(u_3)'*e^(2x)=0 or (u_1)'+(u_2)'*e^x+(u_3)'*e^(2x)=0 (1)

(u_1)'*0+(u_2)'*e^x+(u_3)'*2e^(2x)=0 or (u_2)'*e^x+2(u_3)'*e^(2x)=0 (2)

(u_1)'*0+(u_2)'*e^x+(u_3)'*4e^(2x)=e^(2x)/(e^x+1) or (u_2)'*e^x+4(u_3)'*e^(2x)=e^(2x)/(e^x+1) (3)

[(u_2)'*e^x+4(u_3)'*e^(2x)]-[(u_2)'*e^x+2(u_3)'*e^(2x)]=e^(2x)/(e^x+1)-0

2(u_3)'*e^(2x)=e^(2x)/(e^x+1)

(u_3)'=1/2*1/(e^x+1)

u_3=1/2int (dx)/(e^x+1)

=1/2int (e^(-x)*dx)/(e^(-x)+1)

=1/2Ln(e^(-x)+1)

=1/2Ln((e^x+1)/e^x)

=1/2Ln(e^x+1)-1/2Ln(e^x)

=1/2Ln(e^x+1)-x/2

Consequently,

(u_2)'*e^x+2(u_3)'*e^(2x)=0

(u_2)'=-2e^x*(u_3)'

(u_2)'=-2e^x*1/2*1/(e^x+1)

(u_2)'=-e^x/(e^x+1)

u_2=-Ln(e^x+1)

Hence,

(u_1)'-e^x/(e^x+1)*e^x+1/2*1/(e^x+1)*e^(2x)=0

(u_1)'-e^(2x)/(e^x+1)+1/2*e^(2x)/(e^x+1)=0

(u_1)'=1/2*e^(2x)/(e^x+1)

u_1=1/2int (e^(2x)*dx)/(e^x+1)

=1/2 int [(e^x+1)*(e^x-1)+1]/(e^x+1)*dx

=1/2 int (e^x-1)*dx+1/2 int (dx)/(e^x+1)

=1/2*(e^x-x)+1/2*(Ln(e^x+1)-x)

=1/2e^x-x/2+1/2Ln(e^x+1)-x/2

=1/2e^x+1/2Ln(e^x+1)-x

Hence,

y_p=u_1+u_2*e^x+u_3*e^(2x)

=1/2e^x+1/2Ln(e^x+1)-x-e^xLn(e^x+1)+1/2e^(2x)*Ln(e^x+1)-x/2*e^(2x)

=1/2e^x-1/2Ln(e^x-1)*(2e^x-1)-1/2e^(2x)(x-Ln(e^x+1))

Thus,

y=y_h+y_p

=c_1+c_2e^x+c_3e^(2x)+1/2e^x-1/2Ln(e^x-1)*(2e^x-1)-1/2e^(2x)(x-Ln(e^x+1))