How do you solve: #sqrt(2x+5) - sqrt(x-2) = 3#?

1 Answer
Apr 25, 2015

#sqrt(2x+5) - sqrt(x-2)=3#

  1. First isolate one of the square roots:
    #sqrt(2x+5)=3+sqrt(x-2)#

  2. Then square each side:
    #(sqrt(2x+5))^2=(3+sqrt(x-2))(3+sqrt(x-2))#
    #2x+5=9+6sqrt(x-2)+(x-2)#

  3. Simplify the equations leaving the square root on one sided:
    #x-2=6sqrt(x-2)#

  4. Square each side:
    #(x-2)(x-2)=36(x-2)#

  5. Divide each side by (x-2):
    #x-2=36#
    so #x=38#

All ways check you answer in the original problem:
#sqrt(2x+5) - sqrt(x-2)=3#
#sqrt(2(38)+5) - sqrt(38-2)=3#
#sqrt(81) - sqrt(36)=3#
#9-6=3#
#3=3#