How do you simplify (9^(1/2) * 9^(2/3))^(1/6)(912923)16?

2 Answers
May 22, 2015

Two important law of exponentials here:

  • (a^n)(a^m)=a^(n+m)(an)(am)=an+m

  • (a^n)^m=a^(n*m)(an)m=anm

(9^(1/2)9^(2/3))^(1/6)(912923)16=(9^(1/2+2/3))^(1/6)(912+23)16=(9^(7/6))^(1/6)(976)16=9^((7/6)(1/6))9(76)(16)=color(green)(9^(7/36))9736

May 23, 2015

(9^(1/2)*9^(2/3))^(1/6) = (9^((1/2+2/3)))^(1/6)(912923)16=(9(12+23))16

=(9^(7/6))^(1/6) = 9^(7/6*1/6) = 9^(7/36) = 9^(1/2*7/18)=(976)16=97616=9736=912718

= (9^(1/2))^(7/18) = (sqrt(9))^(7/18) = 3^(7/18)=(912)718=(9)718=3718

The identities we use here are:

x^a * x^b = x^(a+b)xaxb=xa+b

x^(ab) = (x^a)^bxab=(xa)b

x^(1/n) = root(n)xx1n=nx