Given:
a/(a-5)+2=(3a)/(a+5)aa−5+2=3aa+5
Multiply through by (a^2-25) = (a-5)(a+5)(a2−25)=(a−5)(a+5) to get:
a(a+5)+2(a^2-25) = 3a(a-5) = 3a^2-15aa(a+5)+2(a2−25)=3a(a−5)=3a2−15a
Subtract 3a^2-15a3a2−15a from both sides to get:
0 = a(a+5)+2(a^2-25) - 3a^2+15a0=a(a+5)+2(a2−25)−3a2+15a
=a^2+5a+2a^2-50-3a^2+15a=a2+5a+2a2−50−3a2+15a
=(a^2+2a^2-3a^2)+(5a+15a)-50=(a2+2a2−3a2)+(5a+15a)−50
=20a-50=20a−50
Add 5050 to both sides to get
20a=5020a=50
Divide both sides by 5050 to get:
a=5/2a=52
Check by substituting back in the original equation:
LHS = a/(a-5)+2 = (5/2)/(5/2-5)+2=aa−5+2=5252−5+2
=5/(5-10)+2 = 5/-5+2 = -1 + 2 = 1=55−10+2=5−5+2=−1+2=1
RHS = (3a)/(a+5) = (3(5/2))/(5/2+5) = (3(5/2))/(3(5/2)) = 1=3aa+5=3(52)52+5=3(52)3(52)=1