How do you solve a/(a-5)+2=(3a)/(a+5)aa5+2=3aa+5?

1 Answer
May 24, 2015

Given:

a/(a-5)+2=(3a)/(a+5)aa5+2=3aa+5

Multiply through by (a^2-25) = (a-5)(a+5)(a225)=(a5)(a+5) to get:

a(a+5)+2(a^2-25) = 3a(a-5) = 3a^2-15aa(a+5)+2(a225)=3a(a5)=3a215a

Subtract 3a^2-15a3a215a from both sides to get:

0 = a(a+5)+2(a^2-25) - 3a^2+15a0=a(a+5)+2(a225)3a2+15a

=a^2+5a+2a^2-50-3a^2+15a=a2+5a+2a2503a2+15a

=(a^2+2a^2-3a^2)+(5a+15a)-50=(a2+2a23a2)+(5a+15a)50

=20a-50=20a50

Add 5050 to both sides to get

20a=5020a=50

Divide both sides by 5050 to get:

a=5/2a=52

Check by substituting back in the original equation:

LHS = a/(a-5)+2 = (5/2)/(5/2-5)+2=aa5+2=52525+2

=5/(5-10)+2 = 5/-5+2 = -1 + 2 = 1=5510+2=55+2=1+2=1

RHS = (3a)/(a+5) = (3(5/2))/(5/2+5) = (3(5/2))/(3(5/2)) = 1=3aa+5=3(52)52+5=3(52)3(52)=1