How do you simplify #(1 - x^2)^(1/2) - x^2(1 - x^2)^(-3/2)#?

1 Answer
Jul 4, 2015

#((-x^2+x+1)(-x^2-x+1))/(1-x^2)^(3/2)#

Explanation:

#(1-x^2)^(1/2)-x^2(1-x^2)^(-3/2)#

We will use : #color(red)(a^(-n) = 1/a^n)#

#<=> (1-x^2)^(1/2)-x^2/(1-x^2)^(color(red)(+3/2))#

We want two fractions with the same denominator.

#<=> ((1-x^2)^(1/2)*color(green)((1-x^2)^(3/2)))/color(green)((1-x^2)^(3/2))-x^2/(1-x^2)^(+3/2)#

We will use : #color(red)(u^(a)*u^(b) = u^(a+b))#

#<=> (color(red)((1-x^2)^(2)))/(1-x^2)^(3/2)-x^2/(1-x^2)^(3/2)#

#<=> ((1-x^2)^(2)-x^2)/(1-x^2)^(3/2)#

We will use the following polynomial identity :

#color(blue)((a+b)(a-b)=a^2-b^2)#

#<=> color(blue)((1-x^2+x)(1-x^2-x))/(1-x^2)^(3/2)#

#<=> ((-x^2+x+1)(-x^2-x+1))/(1-x^2)^(3/2)#

We can't do better than this, and now you can easily (if you want) find the solution of # ((-x^2+x+1)(-x^2-x+1))/(1-x^2)^(3/2) = 0#