How do you find the exact functional value sin(60˚+45˚) using the cosine sum or difference identity?

1 Answer
Aug 14, 2015

sin (60^@ + 45^@) = (sqrt(3) + 1)/(2sqrt(2))

Explanation:

Using the sine identity:
sin (A +- B) = sin A cos B +- cos A sin B

sin (60^@ + 45^@) = sin 60^@ cos 45^@ + cos 60^@ sin 45^@
= sqrt(3)/2 xx 1/sqrt(2) + 1/2 xx 1/sqrt(2) = (sqrt(3) + 1)/(2sqrt(2))

If you want to use the cosine identity:
cos (A +- B) = cos A cos B ""_+^(-) sin A sin B

sin A = cos (A-90^@)

sin (60^@+45^@) = cos (60^@ - 45^@)
= cos 60^@ cos 45^@ + sin 60^@ sin 45^@
= 1/2 xx 1/sqrt(2) + sqrt(3)/2 xx 1/sqrt(2)
= (sqrt(3) + 1)/(2sqrt(2))