How do you find the integral of sqrt(9-x^2)dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer dani83 Aug 17, 2015 int sqrt(9-x^2)dx = 9/2(sin^(-1) (x/3) + x/3sqrt(1-(x/3)^2)) + C Explanation: sin^2 A + cos^2 A = 1 cos 2A = 2cos^2 A - 1 sin 2A = 2sin Acos A Use substitution. x = 3 sin t int sqrt(9-x^2)dx = int 3sqrt(1-sin^2 t) xx 3 cos t dt = 9 int cos^2 t dt 9int cos^2 tdx = 9/2 int (1+cos 2t)dt = 9/2 (t + 1/2sin 2t) + C In terms of x: int sqrt(9-x^2)dx = 9/2(sin^(-1) (x/3) + x/3sqrt(1-(x/3)^2)) + C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 26554 views around the world You can reuse this answer Creative Commons License