How do you find the integral #intx^3*sqrt(9-x^2)dx# ?

1 Answer
Aug 29, 2014

#=(9-x^2)^(5/2)/5-3(9-x^2)^(3/2)+c#, where #c# is a constant

Explanation :

#=intx^3*sqrt(9-x^2)dx#

Using Integration by Substitution,

let's assume #9-x^2=t^2#, then

#-2xdx=2tdt# #=>xdx=-tdt#

#=int-(9-t^2)t^2dt#

#=int(t^4-9t^2)dt#

#=intt^4dt-9intt^2dt#

#=t^5/5-9t^3/3+c#, where #c# is a constant

#=t^5/5-3t^3+c#, where #c# is a constant

Substituting #t# back,

#=(9-x^2)^(5/2)/5-3(9-x^2)^(3/2)+c#, where #c# is a constant